# An ESR Study on Oxygen Adsorption and Illumination of Vacuum Treated V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub>

E. Serwicka\* and R. N. Schindler Institut für Physikalische Chemie, Universität Kiel

Z. Naturforsch. 36a, 992-995 (1981); received May 12, 1981

Oxygen adsorption on vacuum treated  $TiO_2$  doped with vanadium results in the formation of  $O_2$ —species. It is argued that substitutional  $V^{3+}$  ions act as electron donors. The oxygen radicals are stabilized in the neighbourhood of titanium ions. Depending on the oxygen pressure photoadsorption or photodesorption of oxygen is observed.

#### Introduction

It is well known that surface as well as bulk properties of solids can be drastically changed by the presence of structural defects. In particular the existence of surface anion vacancies formed upon vacuum reduction of metal oxides is regarded as a factor promoting the creation of stable radicals on these compounds [1].

In the present paper results are described obtained upon oxygen adsorption on vacuum treated  $V_2O_5/TiO_2$ . The formation of radical oxygen species is demonstrated by means of ESR. Their behaviour upon illumination is investigated.

## **Experimental**

Samples containing different vanadium concentrations were obtained by impregnation of TiO<sub>2</sub> (anatase, optipur Merck) with suitable amounts of ammonium metavanadate solution (Merck, pro analysis). The preparations were calcinated in air at 250 °C for 2 hours and submitted to vacuum treatment (10<sup>-5</sup>—10<sup>-6</sup> Torr) at 600 °C for different periods of time. After pretreatment in vacuo the samples were inserted into the ESR cavity while staying connected to a vacuum line equipped with greaseless stopcocks.

Oxygen was introduced to the samples at room temperature. The excess gas was pumped off down to  $10^{-3}$  Torr and the ESR spectra were registered

at 77 K using a Varian E-line Century Series ESR spectrometer model E-112 equipped with an optical transmission cavity type E-234. Further details are given elsewhere [2].

## Results

Undoped TiO<sub>2</sub> submitted to vacuum treatment at 600 °C yields the spectrum shown in Figure 1a. It consists of a strong line with g = 2.003 being attributed to electrons trapped at anion vacancies and a broad signal with  $g_{av} = 1.96$  due to Ti<sup>3+</sup> ions [3]. From samples containing vanadium the spectrum given in Fig. 1b (continuous line) is obtained. The parameters  $g_{\parallel} = 1.909$ ,  $g_{\perp} = 1.973$  and the well resolved hyperfine splitting with  $A_{\parallel}\!=\!190\,\mathrm{G}$  are close to those of vanadium ions in vanadyl coordination, i.e. V4+ in close association with O2-[4, 5]. The narrow line centered at g = 2.003 is possibly connected with an electron trapped at a lattice defect, e.g. an oxygen vacancy. The spectrum of vanadyl ions is observable also at room temperature, which indicates a rather long relaxation time of these paramagnetic centers. The comparison of the spectrum presented in Fig. 1a with the corresponding part in the spectrum 1b indicates that in samples doped with vanadium no detectable amounts of Ti3+ ions are present. Prolonged reducing treatment at this temperature results in diminishing of the vanadyl ion spectrum.

## Oxygen Adsorption

A significant change in the low-temperature ESR spectrum is observed upon oxygen adsorption on doped vacuum treated TiO<sub>2</sub> at room temperature.

\* On leave from Institute of Catalysis, Polish Academy of Sciences, Krakow, Poland.

Reprint requests to Prof. R. N. Schindler, Institut für Physikalische Chemie der Universität Kiel, Olshausenstraße 40-60, 2300 Kiel.

0340-4811 / 81 / 0900-0992 \$ 01.00/0. — Please order a reprint rather than making your own copy.



Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

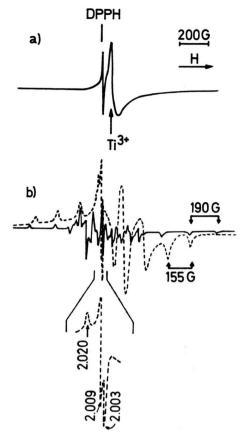



Fig. 1. a) ESR spectrum of pure  $TiO_2$  after vacuum treatment at 600 °C for 2 hours. b) ESR spectrum of  $TiO_2$  doped with 0.1% V: — after vacuum treatment at 600 °C for 2 hours ---- after oxygen adsorption at room temperature,  $10^{-2}$  Torr.

The formation of two paramagnetic species is detected (Fig. 1b dashed line). One spectrum with  $g_1=2.020,\ g_2=2.009$  and  $g_3=2.003$  corresponds apparently to the  $O_2^-$  radical. This part of the spectrum is reproduced as insert in Figure 1b. The parameters of the other species, i.e.  $g_{\parallel}=1.956,\ g_{\perp}=1.912$ , and the well resolved hyperfine splitting with  $A_{\parallel}=155\,\mathrm{G}$  are characteristic for V<sup>4+</sup> incorporated substitutionally into the rutile matrix. The signal due to  $(VO)^{2+}$  ions disappears. Also, when the sample was annealed in air at 600 °C for a short time a strong signal was obtained due to V<sup>4+</sup> ions built substitutionally into the rutile matrix [2a]. No  $O_2^-$  formation was observed under these circumstances [2].

## **Illumination Experiments**

The photoresponse of the O<sub>2</sub><sup>-</sup>radical signal upon illumination with light from a high pressure Xenon lamp depended on the oxygen pressure in the vessel.

# a) Residual oxygen pressure $\sim 5 \times 10^{-4}$ Torr.

Figure 2a shows the photobehaviour of  ${\rm O_2}^-$  radicals upon illumination in the case when the vessel was evacuated down to  $\sim 5 \times 10^{-4}$  Torr. As shown the intensity of the signal decreased upon illumination. Simultaneously an increase of the residual oxygen pressure in the vessel was observed. This behaviour indicates that oxygen photodesorption from the sample takes place. When the light was turned off, the signal corresponding to  ${\rm O_2}^-$  radicals increased again and the pressure in the system simultaneously decreased. This behaviour suggests readsorption of oxygen in the dark period.

# b) Residual oxygen pressure $\sim 10^{-1}$ Torr.

The photobehaviour of  ${\rm O_2}^-$  radicals at higher oxygen pressure is presented in Figure 2b. Under illumination the signal corresponding to  ${\rm O_2}^-$  increased. The subsequent dark period practically did not influence the concentration of photoproduced  ${\rm O_2}^-$ .

In order to check whether the observed photoresponse is connected with the formation of excitons across the band gap, illumination experiments were carried out using cut-off filters. It was found that the photodesorption is connected with

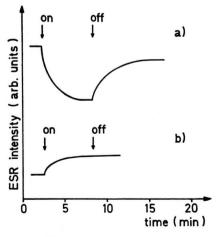



Fig. 2. Photoresponse of the  ${\rm O_2}^-$  radical. a) oxygen pressure  $5\times 10^{-4}$  Torr; b) oxygen pressure  $10^{-1}$  Torr.

electron-hole photoproduction, since it did not occur upon irradiation with light of wavelenghts  $\lambda > 415$  nm (E < 3.0 eV).

On the other hand, the photoproduction of  ${\rm O_2}^-$  occurred in a much broader range of wavelenghts. Even with the longest wavelenghts accessible to us  $(\lambda > 700\,{\rm nm})$  the effect was still observed.

#### Discussion

During the last years the interaction of oxygen with  $TiO_2$  as well as with  $V_2O_5$  has been extensively studied, since both oxides are important for the catalytic oxidation of hydrocarbons. It is argued that the speciation of the adsorbed oxygen is one of the major factors influencing the pathway of the catalytic reaction [6].

It was found that in the case of  $\text{TiO}_2$  most of the oxygen is chemisorbed as  $\text{O}_2^-$  species. The ESR experiments demonstrated that pretreatment in vacuo results in the formation of  $\text{Ti}^{3+}$  ions. Upon contact with oxygen these centers were depleted, and simultaneously the formation of  $\text{O}_2^-$  radicals was observed [3, 7].

The results of the ESR investigation reported here demonstrate that the spectra of vanadium doped TiO<sub>2</sub> depend on the extent of vacuum pretreatment. Samples show the presence of small amounts of vanadium ions in vanadyl coordination. The intensity of the (VO)2+ absorption decrases with the time of vacuum reduction. The majority of vanadium, however, is revealed after annealing in air, in the form of substitutional V4+ ions. The observed appearance of V4+ ESR signal upon sample oxidation is most probably due to the fact that during vacuum treatment, which leads to a loss in oxygen, the incorporated vanadium undergoes reduction to V3+ ions. These centers are non-Kramers ions and do not give an ESR signal. Reoxidation transforms them into V4+ ions giving rise to the observed strong ESR absorption being characterized by the values  $g_{\parallel} = 1.956$ ,  $g_{\perp} = 1.912$  and the well resolved eight line hyperfine structure with  $A_{\parallel} = 155$  G. No detectable amount of Ti3+ was found in the vacuum treated vanadium doped TiO2, in agreement with data reported by others [8, 9]. Evidently the excess electrons are preferably located on dopant ions. Only the +4 oxidation state is detectable by ESR.

## Oxygen Chemisorption

The room temperature chemisorption of oxygen on vacuum treated doped TiO2 containing 0.1 or 0.3at.% vanadium results in the formation of O<sub>2</sub> oxygen radicals (Fig. 1b-insert). From the simultaneous appearance of V4+ ions at substitutional sites it is concluded that V3+ ions were acting as electron donors to the adsorbed oxygen. The lack of hyperfine structure and the g-values similar to those obtained for O<sub>2</sub><sup>-</sup> adsorbed on pure TiO<sub>2</sub> [10] suggest, however, that the oxygen radicals are located in the neighbourhood of titanium rather than vanadium ions. A similar effect was observed for V<sub>2</sub>O<sub>5</sub> supported on MgO [11], where O<sub>2</sub> radicals created were stabilized on Mg2+ ions. It is argued that the adsorptive properties of vanadium ions depend strongly on their coordination in the lattice. The octahedral surrounding, which exists in the V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> as well as in the V<sub>2</sub>O<sub>5</sub>/MgO systems prevents the stabilization of O<sub>2</sub> radicals at the dopant ions. On the other hand the tetrahedral coordination existing in the V<sub>2</sub>O<sub>5</sub>/SiO<sub>2</sub> system provides suitable conditions for oxygen radicals to be stabilized on vanadium centers [12].

## Photobehaviour of the $0_2$ Radical

The illumination experiments demonstrated that, depending on the oxygen pressure in the vessel, an increase or a decrease in the  $O_2$  absorption can be obtained. A similar observation is reported for pure TiO<sub>2</sub> [13, 14].

Assuming formally that  $O_2^-$  is the only chemisorbed oxygen species, the following equations may be considered to relate the observed effects upon illumination to the oxygen pressure:

$$(TiO2) + h\nu \rightleftharpoons p^{+} + e^{-}, \qquad (1)$$

$$O_{2(g)} \rightleftharpoons O_{2(ads.)}$$
, (2)

$$O_{2 \text{ (ads.)}} + e^- \rightarrow O_2^-,$$
 (3)

$$O_2^- + p^+ \to O_{2 \text{ (ads.)}}$$
 (4)

Reactions (3) and (4) are considered irreversible. According to this scheme, the oxygen pressure determines the surface coverage with adsorbed oxygen. That is why at high oxygen pressures the enhancement or photoadsorption is expected. On the other hand at low oxygen pressures photodesorption should be favoured. The resulting low surface coverage of oxygen will limit the contribution of reac-

tion (3). As a result the recombination of the photoproduced holes with surface oxygen radicals, according to reaction (4), will dominate in the net effect.

The experimental results reported here are in agreement with the above consideration. Reversible photodesorption of oxygen was observed at a residual oxygen pressure of  $\sim 5 \times 10^{-4}$  Torr. The net photoadsorption effect was only observed at the higher oxygen pressure of  $\sim 10^{-1}$  Torr.

The use of cut-off filters demonstrated that the photodesorption effect depends on the transition across the band gap. This is understandable since, according to (4), the photodesorption is due to the recombination of  $O_2^-$  radicals with photoproduced holes. On the other hand the photoadsorption occurred in a much broader range of wavelengths. Thus it may be concluded that not only electrons from excitons, but also electrons from donor levels below the conduction band are effective in the formation of the  $O_2^-$  species.

- R. D. Iyengar, M. Codell, H. Gisser, and J. Weisberg, Z. Phys. Chem. N. F. 89, 325 (1974).
- [2] E. Serwicka and R. N. Schindler, Z. Phys. Chem. N. F. in press (1981).
- [2a] K. Dyrek, E. Serwicka, and B. Grzybowska, React. Kinet. Catal. Lett. 10, 93 (1979).
- [3] E. Serwicka, M. W. Schlierkamp, and R. N. Schindler, Z. Naturforsch. 36a, 226 (1981).
- [4] L. L. van Reijen and P. Cossee, Disc. Faraday Soc. 41, 277 (1966).
- [5] P. Meriaudeau and J. C. Vedrine, Nouv. J. Chim. 2, 133 (1978).
- [6] A. Bielanski and J. Haber, Catal. Rev.-Sci. Eng. 19, 1 (1979).

## Conclusions

Adsorption of oxygen on vacuum treated vanadium doped  $TiO_2$  leads to the formation of  $O_2$  radical species.

Electron transfer is discussed to occur from substitutional  $V^{3+}$  non-Kramers centers turning them into  $V^{4+}$  ions which become detectable in the ESR spectrum. The lack of hyperfine structure indicates that the oxygen radicals are stabilized on the titanium rather than on vanadium ions.

Upon illumination at low oxygen pressure photodesorption of oxygen is observed, whereas at higher oxygen pressure the photoadsorption is favoured.

## Acknowledgement

One of the authors (E.S.) would like to express her gratitude to the Alexander von Humboldt Stiftung for a research grant.

- [7] R. D. Iyengar and M. Codell, Adv. Colloid Interface Sci. 3, 365 (1972).
- [8] H. J. Gerritsen and H. R. Lewis, Phys. Rev. 119, 1010 (1960).
- [9] F. Kúbec and Z. Sroubek, J. Chem. Phys. 57, 1660 (1972).
- [10] J. H. Lunsford, Catal. Rev. 8, 135 (1973).
- [11] K. N. Spiridonov, G. B. Pariiskii, and O. V. Krylov, Kinet. Katal. 12, 1448 (1971).
- [12] V. A. Shvets, V. M. Vorotyntsev, and V. B. Kazanskii, Kinet. Katal. 10, 356 (1969).
- [13] S. Bourasseau, J. R. Martin, F. Juillet, and S. J. Teichner, J. Chim. Phys. 71, 1017 (1974).
- [14] S. Fukuzawa, K. M. Sancier, and T. Kwan, J. Catalysis 11, 364 (1968).